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Abstract

Protein interactions are central to the complex machinery of cellular pro-
cesses and hold significant promise in unravelling the mysteries associated
with various diseases. A detailed understanding of these interactions can
provide insights into molecular biology and facilitate breakthroughs in
research, further advancing therapeutic discovery for many diseases. Cur-
rent literature predominantly concentrates on predicting general Protein-
Protein Interactions (PPIs), with limited research dedicated to disease-
specific PPI predictions. Additionally, emerging LLMs have shown sig-
nificant promise in various biological applications. This study aims to
combine these existing research ideas by leveraging LLMs specifically for
predicting protein interactions in the context of certain diseases. Our
approach involves fine-tuning various LLMs such as Llama-2, Galactica,
Falcon, MPT, BioMedLM, and BioGPT for predicting whether two pro-
teins interact in the presence of cancer. Additionally, we evaluate the per-
formance of Low Rank Adaptation (LoRA), a Parameter Efficient Fine-
Tuning (PEFT) algorithm, and analyze its ability to enhance the compu-
tational efficiency of LLMs for this task. The results show that between
each of the models studied, the Falcon model has the best performance,
predicting protein interactions in the presence of cancer to approximately
84% accuracy. This marks a significant enhancement when fine-tuning
with LoRA, compared to the 53% accuracy without any fine-tuning.

1 Introduction

Recent years have witnessed transformative advancements in Natural Language
Processing (NLP), marked by the advent of Large Language Models (LLMs).
Equipped with remarkable capabilities for processing and understanding text
data, these models have begun to redefine the boundaries of various domains,
including molecular biology.

A main goal of this study is to see how well LLMs work in understanding



complex relationships between molecules, like those present in cancer diagnoses.
The hypothesis is that the LLMs will learn distinctions between different protein
names through the thousands of data samples we provide during training. Given
that the naming conventions in molecular biology and chemistry inherently en-
code relationships and characteristics within the syntax of protein names, it is
anticipated that these trained language models will demonstrate proficiency in
learning and predicting protein interactions.

By combining these advanced language models with knowledge of molecular
biology, we hope to find new ways to better understand and predict interactions
between proteins linked to diseases. This could help improve cancer research
and our overall knowledge in molecular biology.

In this paper, our contribution is threefold:

1. Fine-tuning various LLMs for prediction of protein interactions when prompted
with two target proteins.

2. Determining which LLMs are most suitable for this task.

3. Comparing the original pre-trained models to the models trained with
LoRA, to determine which strategy is more effective and computationally
efficient.

2 Related Works

With recent advancements in computational biology, many have begun to har-
ness the power of deep learning for biological tasks. AlphaFold [5], for example,
represents a significant breakthrough by employing a novel machine learning
approach that accurately predicts protein structures with atomic precision.

Additionally, attention-based language models like ProGen2 have been intro-
duced [6]. ProGen2 demonstrates state-of-the-art performance in tasks such as
capturing evolutionary sequences, and predicting protein fitness without addi-
tional fine-tuning, underlining the increasing importance of large-scale language
models in computational biology.

In a related study [7], a new method for identifying protein-protein interactions
(PPIs) has been introduced. This method uses the Graph-BERT, ProtBERT,
and SeqVec language models to better understand and represent the details
within a PPI network graph. By applying these models, it manages to effec-
tively use protein sequence information to improve the classification of PPIs,
performing better than previous methods. This approach yields the highest
results in general protein interaction prediction, demonstrating the promising
potential of using language models for this task.



A different approach that has been gaining popularity is the use of convolu-
tional neural networks (CNNs) for PPI prediction. Wang et al. [2] investigated
this by combining a feature representation method, Bio2Vec, with a CNN to
develop a language processing model aimed at predicting PPIs from protein se-
quences. Another study [3] introduced a deep learning framework called DPPI,
which also employs a CNN to predict PPIs using sequence information.

Moreover, [4] present a new method called PIPR for predicting PPIs using
only protein sequences. Unlike traditional models that depend on complicated
and hard-to-obtain features, PIPR makes the process simpler by directly using
the information from protein sequences. This new approach does a better job
than many existing systems, not only in basic PPI predictions but also in more
complex tasks like figuring out the type of interaction and estimating binding
strength between proteins.

Many existing methods primarily concentrate on predicting and discovering
general protein interactions, with limited exploration of deep learning for PPI
prediction in the context of specific diseases. The NECARE model [1] stands
out in this regard, exhibiting state-of-the-art performance in PPI prediction
specifically related to cancer. It employs a deep learning framework, utilizing
a Relational Graph Convolutional Network (R-GCN), enabling it to surpass all
of the top models in predicting cancer-associated protein interactions.

In this paper, we leverage the carefully curated dataset presented in the NECARE
paper, combined with the advanced capabilities of modern LLMs and fine-tuning

strategies, to create a protein interaction prediction model that excels in the do-

main of cancer biology. This approach aims to improve the precision of cancer-

related PPI predictions, setting the stage for the development of more refined

prediction models tailored to specific diseases.

3 Dataset

The dataset used for the fine-tuning process of the LLMs in this study is the
training dataset used by the NECARE model [1], made up of protein-protein
interactions in the presence of cancer. For the positive training set, data were
collected from three sources: the KEGG, Reactome, and OncoPPI databases.
These databases provide information on known cancer PPIs. For the negative
training set, the dataset incorporated pairs from the KEGG database that were
marked with ”disassociation/missing interaction” or other indicators signifying
a lack of interaction in cancer-related pathways.

In total, there are 933 positive interactions and 1308 negative interactions,
adding up to a total of 2241 data points. We used this set to train the LLMs,
and formulated the problem as a binary classification task, teaching the models
to predict either positive or negative interaction between two target proteins.
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Figure 1: LoRA Reparameterization. Source (9)

4 PEFT & LoRA

There has been extensive research in the domain of LLMs, specifically in de-
veloping parameter efficient algorithms for fine-tuning them. Reference [8] goes
over 30 PEFT strategies, and their tradeoffs. They conclude that LoRA [9], TA3
[10], and Prompt Tuning [11] are among the most scalable techniques. In this
paper, we will make use of the LoRA strategy to minimize the computational
load of the training process.

Parameter Efficient Fine-Tuning (PEFT) is an approach that focuses on fine-
tuning large pre-trained models without adjusting all the parameters. The idea
is to only modify a small subset of the model’s parameters, making the process
more efficient, especially for very large models. PEFT allows for customizing
the model to specific tasks or datasets while requiring significantly less compu-
tational resources compared to traditional fine-tuning methods that update all
parameters.

Low-Rank Adaptation (LoRA) is a specific type of PEFT algorithm where the
adaptation is achieved by introducing low-rank matrices into the pre-trained
model. In this method, the original weight matrices of the model are not di-
rectly modified. Instead, small rank matrices are introduced that interact with
the original weights. This allows for efficient and effective fine-tuning, as only
these low-rank matrices are updated during training. LoRA is particularly useful
for adapting LLMs, as it offers a balance between adaptability and computa-
tional efficiency.

In conventional deep learning architectures, dense layers typically perform ma-
trix multiplications using fully-ranked weight matrices. However, during adap-
tation, these matrices often exhibit a naturally low rank. The modification
of a pre-existing weight matrix, W, € R?** is encapsulated via a low-rank
decomposition formula:

Wo + AW =Wy + BA



Here, B € R and A € R"*F represent the newly introduced low-rank ma-
trices, where r—significantly smaller than the dimensions of Wy—denotes the
rank. In this setup, Wy remains static during the training phase, while A and B
are the dynamic elements subject to training, thus allowing the model to adapt
efficiently with minimal parameter adjustments.

5 Training

5.1 Procedure

Six different LLMs were trained, including Llama-2-7b, Galactica-7b, Falcon-
7b, MPT-7b, BioMedLM-2.6b, and BioGPT-1.6b. The data was formatted into
a prompt and a label, where the prompt asks ”Is there a protein interaction
between ProteinA and ProteinB?” and the label is either "yes” or "no”. The
goal was to train the language models to accurately predict whether there is an
interaction of the two proteins.

To give a more robust generalization of each model’s performance on the dataset,
we employed 5-fold cross validation to help understand how well the model was
performing on unseen data. To elaborate, we split the dataset into 5 subsets or
folds, then for each fold, 60% of the data is used for training, 20% is the valida-
tion set, and the last 20% is the test set. This process is repeated for each fold,
where we rotate the data split such that no two folds have the same test set.
Furthermore, the testing set was never used during the training or validation
procedures. Using each of the 5 folds, we train a separate model, and evaluate
that model’s performance on the validation set of its respective fold. At the
end, we load the model that achieved the lowest validation loss and evaluate
this model on the test set from its respective fold.

5.2 Hyper-Parameters

The hyperparameters used for all models during training are as follows: learn-
ing rate = le-5, number of epochs = 20, batch size = 16, weight decay = .05,
prompt length = 18, number of new tokens generated = 2.

Furthermore, the LoRA configuration parameters remained constant through
these experiments as well and these consist of r = 16, lora alpha = 8, lora
dropout = .1. The LoRA target modules for Galactica, Llama-2, and BioGPT
used ['q_proj’, 'v_proj’]. For the Falcon model, I used ['query_key_value’], for
MPT I set this to [Wqkv’], and for BioMed LM this was set to ['c_attn’, ’c_proj’].

5.3 Hardware

All experiments were conducted using the Nvidia A100 GPUs at the Compu-
tational Science Initiative’s High Performance Computing (HPC) cluster. This



state-of-the-art HPC environment is engineered to handle extensive computa-
tional loads and complex data analyses, making it an ideal setting for compu-
tationally intensive tasks.

6 Results

Model Acc. MCC | AUC Spec. Prec. F1
Falcon-7b 0.5268 | -0.1912 | 0.4591 | 0.9183 | 0.2763 | 0.3450
Galactica-7b 0.4397 | 0.0592 | 0.5097 | 0.0350 | 0.5906 | 0.3333
MPT-7b 0.2344 | -0.5544 | 0.2211 | 0.3113 | 0.2245 | 0.2227
Llama-2-7b 0.4330 | -0.1112 | 0.4447 | 0.3658 | 0.4442 | 0.4329
BioMedLM-2.7b | 0.0067 | -0.9864 | 0.0058 | 0.0117 | 0.0077 | 0.0067
BioGPT-1.6b 0.0647 | -0.8776 | 0.0564 | 0.1128 | 0.0659 | 0.0608

Table 1: Comparison of original pre-trained LLMs

Model Acc. MCC | AUC Spec. Prec. F1
Falcon-7b 0.8438 | 0.6795 | 0.8383 | 0.8755 | 0.8413 | 0.8396
Galactica-Tb 0.8326 | 0.6562 | 0.8259 | 0.8716 | 0.8304 | 0.8278
MPT-7b 0.8103 | 0.6094 | 0.7990 | 0.8755 | 0.8106 | 0.8028
Llama-2-7b 0.7924 | 0.5743 | 0.7740 | 0.8988 | 0.8009 | 0.7799
BioMedLM-2.7b | 0.6629 | 0.3211 | 0.6121 | 0.9572 | 0.7299 | 0.5842
BioGPT-1.6b 0.5871 | 0.1721 | 0.5870 | 0.5875 | 0.5851 | 0.5839

Table 2: Comparison of LLMs trained with LoRA

The results of these experiments give us a comprehensive analysis of the perfor-
mance of each model under a variety of different conditions. To get a quantita-
tive understanding of each model’s performance, we gathered metrics of accu-
racy, matthews correlation coefficient (MCC), area under the roc curve (AUC),
specificity, macro precision, and macro F1 score for each task.

First, I analyzed each of the original pre-trained model on the task. It is clear
that the Falcon LLM performed best without any fine-tuning, predicting pro-
tein interactions with about 53% accuracy. Similarly, the Galactica and Llama-2
models also performed well, achieving close to 43% accuracy. The other LLMs,
like MPT, BioMedLM, and BioGPT did not perform well without any fine-
tuning.

After conducting experiments by fine-tuning these models using LoRA, it is
evident that the Falcon model is superior, achieving an impressive 84% accu-
racy. Galactica, MPT, and Llama all performed similarly, achieving close to
80% accuracy. It is clear that as we fine-tune smaller models, there is a signif-
icant performance decrease, for example the 2.7b parameter BioMedLLM model
and the 1.6b parameter BioGPT model are significantly outperformed by each



of the 7b parameter models. This observation indicates that even larger models
will yield better results.

The loss graphs below show that each model learns the task effectively, con-
verging quickly and then becoming more specialized with more training epochs.
The comparison of each LoRA trained model, along with the original pre-trained
models, is presented in the tables above. Overall, it appears that optimizing the
Falcon-7b model through fine-tuning emerges as the most effective approach for
this particular task. Furthermore, it is noteworthy that even in the absence of
fine-tuning, the Falcon model demonstrates superior performance. However, it
is evident that fine-tuning the LLMs with LoRA shows significant improvements
in all metrics when compared to the original pre-trained models, improving ac-
curacy by more than 30%.
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Figure 2: Loss for Falcon-7b and Galactica-7b models.
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Figure 3: Loss for MPT-7b and Llama2-7b models.
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Figure 4: Loss for BioMedLM-2.7b and BioGPT-1.6b models.

7 Conclusion

Predicting protein interactions within the presence of cancer represents a rela-
tively unexplored research frontier in the realm of natural language processing.
This study demonstrates the advantages of employing LLMs for this task, show-
ing promising results. Our findings indicate that fine-tuning LLMs can be an
effective strategy for protein interaction prediction, highlighting both their per-
formance, and their potential for future research. In addition, we investigate
the ability of LLMs to perform well during fine-tuning in terms of enhanced
computational efficiency, through the use of LoRA. Utilizing this technology is
a big step in helping us understand the syntactic relationships between proteins,
and their interactions in the context of other molecular processes.

8 Future Work

In future research endeavors, we aim to extend this study by evaluating addi-
tional datasets, for example the S. cerevisiae-benchmark dataset [14], and the
H. sapiens-benchmark dataset [14]. The incorporation of benchmark datasets
to our experiments would show a more robust demonstration of these models
on this task. Furthermore, there are other datasets that include more specific
disease-focused protein interactions, which can show how these techniques can
be used for PPI prediction in other contexts, like neurodegenerative disorders
[14] and metabolic disorders [14].

Another path we might take in future works would be to evaluate more PEFT
algorithms, like IA3 [10], Prompt-Tuning [11], Prefix Tuning [12], and P-Tuning
[13]. Evaluating the performance and efficiency of other algorithms would allow
us to explore better training procedures for LLMs, demonstrating their compu-
tational efficiency in low-resource environments. Additionally, these strategies
would become more valuable as we scale up the size of the LLMs, which could
significantly enhance performance.
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