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Abstract

Recent advancements have demonstrated that Large Language Models (LLMs) can
effectively be used for text generation and question answering. Moreover, the develop-
ment of Retrieval Augmented Generation (RAG) methods, which combine LLMs with
information retrieval systems, has further enhanced the capabilities of these models.
However, in the context of graph-based question answering, current RAG approaches
primarily rely on fixed strategies for subgraph retrieval, often leading to the inclusion
of irrelevant information or a loss of topological information. Furthermore, LLMs have
been limited by their tendency to hallucinate, or generate inaccurate or nonsensical
information. To address these limitations, we propose a RAG approach for text-graph
question answering with a trainable subgraph retrieval mechanism using a graph con-
volutional neural network, called GCN-Retriever. To our knowledge, this approach is
the first to effectively train the subgraph retrieval component for text-graph RAG. We
evaluate the efficacy of our GCN-Retriever compared to other similar approaches and
demonstrate comparable results.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in text gener-
ation and question answering tasks. The development of Retrieval Augmented Generation
(RAG) methods has further enhanced these capabilities by combining LLMs with informa-
tion retrieval systems [Béchard and Ayala) [2024]. However, in the context of graph-based
question answering, current RAG approaches face limitations. They often rely on fixed
strategies for subgraph retrieval, which can lead to the inclusion of irrelevant information
or the loss of important topological data [Hu et all |2024, Kang et al., 2023]. Additionally,
LLMs are prone to hallucination, generating inaccurate or nonsensical information.

To address these challenges, we propose a novel RAG approach for text-graph question
answering that incorporates a trainable subgraph retrieval mechanism using a graph convo-
lutional neural network (GCN) [Kipf and Welling}, 2017], which we call GCN-Retriever. To
our knowledge, this is the first approach to effectively train the subgraph retrieval compo-
nent for text-graph RAG. By training the entire RAG system end-to-end and utilizing LLM
feedback, our model learns to retrieve information more relevant to the answer, potentially
reducing hallucination and improving overall performance.



In this paper, we evaluate the efficacy of our GCN-Retriever compared to other similar
approaches and demonstrate comparable results. This is the first approach to train the
subgraph retrieval component for text-graph RAG. By training the entire RAG system end-
to-end, and using the LLM feedback, the model learns to retrieve information more relevant
to the answer. Our work contributes to the growing body of research on RAG systems and
offers a new direction for improving graph-based question answering tasks.

2 Related Works

2.1 General Purpose Large Language Models

Large-scale language models like Llama [Touvron et al., [2023a], and Llama 2 [Touvron
et all 2023b], have highlighted the importance of data design and task-specific training
in improving model performance across a variety of tasks. Additionally, the creation of
the Mistral [Jiang et al.l 2023] model helps to bring open-source LLMs to the forefront of
scientific innovation. These strides in LLM research have brought significant advancements
in other scientific disciplines like biology [Zhang et al. |2024].

2.2 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a technique that combines the generative power
of large language models with the precision of information retrieval systems, enabling the
model to access and incorporate relevant external knowledge dynamically during the gen-
eration process. |[Lewis et al, [2021] introduced the initial concept of RAG, demonstrating
its effectiveness in tasks requiring extensive knowledge integration. Recent advancements
have focused on optimizing the retrieval process and enhancing the integration between the
retrieved information and the generative model. For example, [Izacard et all |2022] pro-
posed a few-shot learning approach for RAG, improving its adaptability to new tasks with
minimal annotated data. Additionally, [Guu et al., 2020] explored pre-training strategies
for retrieval-augmented language models, highlighting the benefits of incorporating retrieval
mechanisms during the pre-training phase.

2.3 RAG for Graph-Based Question Answering

Much research has been focused on developing RAG for LLMs, with a particular emphasis
on its application in graph question answering [Xu et al., 2024]. However, the effectiveness
of these systems can be limited by the static nature of their retrieval components. Current
graph-based RAG methods often rely on semantic similarity for subgraph retrieval, which
can result in the propagation of irrelevant information. Examples of such approaches are
discussed in the following papers.

[Hu et al. 2024] employs a strategy that compares all k-hop ego-graphs with the query
vector to retrieve the top N similar subgraphs, then partially masks the irrelevant entities
with a soft pruning module. The pruned ego-graphs are encoded into a soft graph token,
and textual information is encoded into text tokens to be inputted to the language model
for generation.



Similarly, the SURGE framework [Kang et al. 2023 includes a context-relevant subgraph
retriever which retrieves subgraphs relevant to the given dialogue history from a knowledge
graph. Specifically, they measure the similarity of a context and triplet embedding (node,
edge, node) to compose the retrieval distribution. They then encode the subgraph with a
GNN and use contrastive learning to ground the response to the graph’s data.

[He et al. 2024] formulates the subgraph construction of their G-Retriever as a prize-
collecting Steiner tree optimization, where the prize is maximizing semantic similarity of
nodes to the query, while accounting for the size of the subgraph size. Then, an answer is
generated using a ‘graph prompt’, a textualized graph, and the query.

While each of these approaches aim to solve the problem of retrieving irrelevant informa-
tion, none of the retrieval mechanisms presented are trainable, utilizing the feedback from
the generated answers themselves. The methods described primarily use fixed strategies to
retrieve subgraphs based on pre-defined criteria such as semantic similarity and structural
properties of the graph. These methods do not incorporate a feedback loop where the qual-
ity of the generated answers influences the retrieval process in a trainable manner.

For example, [Hu et all |2024], use soft pruning to filter out irrelevant entities based on
semantic similarity, but this process is not dynamically adjusted based on the performance
of the generated answers. Similarly, [He et all 2024] uses a prize-collecting Steiner tree
optimization to construct subgraphs, and |[Kang et al. [2023] employs a context-relevant
subgraph retriever with contrastive learning, but neither approach adapts its retrieval strat-
egy based on answer accuracy.

A trainable retrieval mechanism is necessary to dynamically learn the balance of semantic
similarity with the relevance of node links to the correct answer. Incorporating a trainable
retrieval mechanism allows the system to adjust its retrieval strategy based on feedback
from the performance of the generated answers. This dynamic adjustment is essential for
balancing semantic similarity with the relevance of node links, ensuring that the retrieved
subgraphs are both contextually appropriate and accurate in terms of the information they
contain.

Our proposed GCN-Retriever addresses this gap by introducing a trainable subgraph re-
trieval mechanism, potentially improving the overall performance of graph-based RAG sys-
tems for question answering tasks.

3 Problem Formalization

We propose a trainable subgraph retrieval mechanism using a graph convolutional network
(GCN) [Kipf and Welling}, 2017] to predict which nodes and edges are most relevant in an-
swering the question.

The model is trained based on the quality of the generated answers by the LLM, so the
system can learn to prioritize retrieving subgraphs that lead to more accurate and relevant
responses. Using this GCN allows the system to dynamically build a subgraph based on the
nodes and edges predicted by the model, which are learned through answering thousands



of questions. This approach addresses the limitations of static retrieval mechanisms and
provides a more adaptive and effective solution for subgraph retrieval in graph-based RAG
question answering systems.

3.1 Graph Convolutional Network
We define the GCN model as follows:
HY = ReLUAXW ()
H® = AHOWD
where:
e A is the adjacency matrix.
e X is the input feature matrix.
e WO and WM are learnable weight matrices.

e H®W and H® are the hidden and output representations, respectively.

The GCN model consists of two layers, each performing a convolution operation followed
by a ReLU activation function. Through multiple epochs, the model learns to predict the
importance of the nodes and edges in answering the query based on the following loss
function:

3.2 Loss Calculation

The loss for the GCN model is calculated using the negative log-likelihood of the node and
edge probabilities, weighted by the loss from the LLM:
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where:

e N is the number of graphs.
e V; and F; are the number of nodes and edges in graph i.

® py,; and pe,, are the probabilities of node j and edge k in graph i.

€ is a small constant to prevent log of zero.

Lim is the loss from the LLM.

The node and edge probabilities calculated in the subgraph generation function, along with
the LLM loss, are used to calculate the loss for the GCN. The probabilities are calculated
from a probability score, outputted from the GCN, which represent the likelihood for each
node and query to be useful in generating the correct answer.

This approach is effective because when we backpropagate this loss through the GCN,
its goal is to minimize this loss, thus making node importance predictions that result in a
lower LLM loss. Generating a subgraph that results in lower LLM loss is the goal because
a lower LLM loss means a more accurate answer.



3.3 Subgraph Generation
The subgraph generation process involves calculating node importance using the GCN
model, followed by selecting top-k nodes and their corresponding edges:
S; = softmax(C; ® H;) (3)

where:

e C,; is the cosine similarity between nodes and query embeddings.

e H; is the node importance predicted by the GCN.

e (O denotes element-wise multiplication.

e S, is the combined importance score for graph i.

The top-k nodes are selected based on S;, and the edges connecting these nodes are included
in the subgraph. This subgraph is then fed into the LLM along with the query during
inference, and the feedback is generated to help train the retriever.

3.4 Training and Evaluation

The training process involves optimizing the GCN model using the Adam optimizer:

WD —w® _ VL., (4)

where 7 is the learning rate.
During evaluation, the best model is selected based on the validation loss:

1
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where V is the validation set.

This approach leverages the strengths of both GCNs and LLMs for improved question
answering over large graphs. The GCN learns to identify relevant portions of the graph by
considering both structural properties and semantic relevance to the query. This selective
mechanism allows the LLM to focus on the most pertinent information, allowing us to di-
rectly optimize the retrieval step.

The loss function is particularly noteworthy. By using the LLM’s loss to guide the GCN’s
learning, we create a training signal. When the LLM demonstrates strong performance,
indicated by a low loss, it reinforces the GCN to continue selecting similar subgraphs in
subsequent iterations. Conversely, when the LLM exhibits poor performance, resulting in
higher loss, the GCN undergoes more substantial updates, thereby encouraging the explo-
ration of alternative subgraph selections.

This joint learning approach allows the retrieval mechanism (GCN) to adapt to the needs of
the reasoning component (LLM), leading to more effective and efficient question answering

systems for large-scale graph-structured data.

The model architecture is shown below:
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Figure 1: Retriever Model Architecture

4 Datasets

The dataset used is the scene graphs dataset used by [He et al., [2024] as part of the GraphQA
Benchmark. This dataset contains 100,000 graphs, with an average of 19.13 nodes and 68.44
edges per graph. The node attributes include text which describes object attributes (e.g.,
color, shape), the edge attributes include text which describe relations (e.g., actions, spatial
relations), and the given task is to answer questions based on the given graph, with accuracy
as the metric. A visual description of the dataset is shown in figure 2, illustrating the details
of the data structure.

5 Experiments

We evaluate our proposed algorithm against the scene graphs dataset used by the G-
Retriever algorithm [He et al.,|2024]. First, we compare our algorithm’s performance against
the G-Retriever’s frozen LLM. In this experiment we keep the LLM frozen and only train
the GCN model. Next, we evaluate our algorithm against the G-Retriever’s prompt-tuned
LLM [Lester et al) [2021], and in doing so we train our GCN and the prompt-tuning in
an end-to-end system. The results demonstrate that our algorithm shows comparable re-
sults with the other algorithms, indicating that this approach could be adapted for further
performance. All experiments were evaluated using the Llama2-7B LLM [Touvron et al.|
2023b], utilizing 2 x NVIDIA H100 80GB HBM3 GPUs. The results of the experiments can
be found in Table 1.

6 Results

In running these experiments, we demonstrate that the text-graph RAG can be trained ef-
fectively. Although our GCN-Retriever algorithm doesn’t outperform the G-Retriever, it is
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Figure 2: Scene Graphs Dataset \ 2024]

Algorithm Zero-shot | Prompt Tuning
GCN-Retriever | 0.3261 0.5541
G-Retriever 0.3974 0.6341
GraphToken — 0.4903

Table 1: Comparison of Algorithms on Scene Graphs Dataset

more accurate than the GraphToken [Perozzi et al.| 2024] in the prompt tuning experiment.
The performance differences observed between the GCN-Retriever and G-Retriever is likely
due to the fundamental difference in subgraph retrieval methodologies.

The static retrieval method used by G-Retriever relies on pre-defined subgraph structures
that do not change during training. This approach can be beneficial for stability and speed,
as the retrieval process is consistent and computationally efficient. However, it lacks the
flexibility to adapt to new information or patterns that may emerge during training, limiting
its ability to optimize retrieval.

In contrast, our dynamic retrieval component allows the model to learn and adapt the
subgraph structures based on feedback from the LLM. This means that our GCN-Retriever
can identify and incorporate new, relevant connections in the graph data during the training
process. This adaptability can lead to more robust optimization, as the model can refine its
retrieval strategy to better suit the specific task at hand. However, this leads to increased
computational overhead during training, which contributes to the observed lag in perfor-
mance compared to the more straightforward static retrieval approach.

Despite these performance differences, the dynamic retrieval methodology offers significant



long-term advantages. By allowing the model to adapt and learn from the graph data in
real-time, we can achieve a more nuanced and accurate understanding of the underlying
relationships within the data. This capability is particularly valuable in applications where
the model must specialize its retrieval for a given task. By allowing the direct optimization
of the retrieval component, we can effectively train the RAG framework based on the LLMs
performance on the task. A dynamic retrieval component in RAG is ideal for optimizing
the retrieval step and enabling end-to-end training for more robust optimization, addressing
gaps in current research.

7 Conclusions & Future Work

Overall, we demonstrate that the text-graph RAG can be trained effectively. Although
GCN-Retriever doesn’t outperform the G-Retriever, it is more accurate than the GraphTo-
ken. Thus, our algorithm performs comparably to the other algorithms. This is significant
because it allows RAG to learn from the graph data dynamically, based on the LLM’s feed-
back, unlike other static retrieval components. A dynamic retrieval component in RAG
is ideal for optimizing the retrieval step and enabling end-to-end training for more robust
optimization, addressing gaps in current research.

Future work could focus on expanding this idea and developing more complicated and robust
learning algorithms for the retrieval components. Additionally, future work could be using
this technology in applications to other scientific disciplines, such as biology, chemistry, and
physics.
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